DEGREES AND CERTIFICATES

Geography Degree

Geography is the science of place and space. Geographers study the relationships among geographic places, natural systems, society, cultural activities, and the interdependence of all these over space.

There are two main branches of geography: human geography and physical geography. Human geography is concerned with the spatial aspects of human existence – how people and their activities are distributed in space, how people use and perceive space, and how people create and sustain the places that make up Earth’s surface.

Physical geographers study the physical elements and spatial processes that make up and shape the environment, including energy, air, water, weather, climate, landforms, soils, animals, and plants. Many human and physical geographers also have skills in cartography and Geographic Information Systems (GIS).

Geographers also study the linkages between human activity and natural systems. Geographers were, in fact, among the first scientists to sound the alarm that human-induced changes to the environment were beginning to threaten the balance of life itself. Geographers today are active in the study of global warming, desertification, deforestation, loss of biodiversity, groundwater pollution, flooding, and more.

The A.S. degree in geography provides students with a solid foundation in geography as well as the standard prerequisites for upper division coursework leading to the baccalaureate degree. The required and elective coursework surveys a broad spectrum of physical geography, human geography, GIS, and related disciplines.

Note to Transfer Students:

For students planning to transfer to a four-year school with a major in geography, it is critical that you meet with an ARC counselor to select and plan the courses for your major. Schools can vary widely in terms of the required lower division preparation; the courses that ARC requires for an Associate’s degree in this major may be different from the courses needed for the Bachelor’s degree at the college or university you have chosen. Students can use PROJECT ASSIST (http://www.assist.org) to research lower division major requirements at transfer institutions in California.

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- describe the general content and scope of collegiate level geography studies.
- compare and contrast the general biophysical and sociocultural differences and similarities among world regions.
- interpret maps and mapped data utilizing basic map elements, including scales, common coordinate systems, and map symbols.
- compare and contrast common geographic information technologies such as Geographic Information Systems (GIS), Global Positioning System (GPS), and remote sensing.
- evaluate and analyze geographic problems and their solutions.
- list and describe at least three career options for geographers.

Career Opportunities

The opportunities for geographers are as varied as the scope of geography itself. Geographers are found throughout the public and private sector, though rarely in positions with the title of Geographer. When combined with appropriate internships and/or other work experience, a baccalaureate degree in geography is excellent preparation for careers such as natural resource management, environmental consulting, urban and regional planning, and elementary and secondary teaching.

Requirements for Degree

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 300</td>
<td>Physical Geography: Exploring Earth's Environment</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 301</td>
<td>Physical Geography Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>GEOG 310</td>
<td>Human Geography: Exploring Earth's Cultural Landscapes</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 330</td>
<td>Introduction to Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>or GEOG 334</td>
<td>Introduction to GIS Software Applications</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 390</td>
<td>Field Studies in Geography</td>
<td>1-4</td>
</tr>
<tr>
<td>or GEOG 390</td>
<td>Field Studies in Geology</td>
<td>1-4</td>
</tr>
<tr>
<td>PSYC 330</td>
<td>Introductory Statistics for the Behavioral Sciences</td>
<td>3</td>
</tr>
<tr>
<td>or STAT 300</td>
<td>Introduction to Probability and Statistics</td>
<td>4</td>
</tr>
</tbody>
</table>

A minimum of 6 units from the following: 6

- ANTH 310 | Cultural Anthropology | 3
- BIOL 310 | General Biology | 4
- BIOL 305 | Natural History | 4
- BIOL 352 | Conservation Biology | 3
- ECON 302 | Principles of Macroeconomics | 3
- ECON 304 | Principles of Microeconomics | 3
- GEOG 305 | Global Climate Change | 3
- or GEOG 320 | Global Climate Change | 3
- GEOG 306 | Weather and Climate | 3
- GEOG 307 | Environmental Hazards and Natural Disasters | 3
- or GEOG 325 | Environmental Hazards and Natural Disasters | 3
- GEOG 308 | Introduction to Oceanography | 3
- or GEOG 330 | Introduction to Oceanography | 3
- GEOG 309 | Introduction to Oceanography Lab | 1
- or GEOG 331 | Introduction to Oceanography Lab | 1
- GEOG 320 | World Regional Geography | 3

(continued on next page)
A. Geography A.A. for Transfer Degree

Geography is the science of place and space. Geographers study the relationships among geographic places, natural systems, society, cultural activities, and the interdependence of all these over space.

There are two main branches of geography: human geography and physical geography. Human geography examines the spatial aspects of human existence — how people and their activities are distributed in space, how people use and perceive space, and how people create and sustain the places that make up Earth’s surface. Physical geography examines the physical elements and spatial processes that make up and shape the natural environment, including energy, air, water, weather, climate, landforms, soils, animals, and plants. Many geographers also utilize geospatial technologies such as Geographic Information Systems (GIS), the Global Positioning System (GPS), and remote sensing.

Geographers also study the linkages between human activity and natural systems. Geographers were, in fact, among the first scientists to sound the alarm that human-induced changes to the environment were beginning to threaten the balance of life itself. Geographers today are active in the study of climate change, desertification, deforestation, loss of biodiversity, groundwater pollution, flooding, and more.

The Associate in Arts in Geography for Transfer provides a clearly articulated curricular track for students who wish to transfer to a CSU campus, while also serving the diverse needs of students interested in the breadth and depth of the field of Geography. Additionally, this degree exposes students to the core principles and practices of the field in order to build a foundation for their future personal, academic, or vocational paths.

The Associate in Arts degree in Geography for Transfer provides students with a major that fulfills the general requirements of the California State University for transfer. Students with this degree will receive priority admission with junior status to the California State University system. The Associate in Arts degree in Geography for Transfer (AAT) may be obtained by the completion of 60 transferable, semester units with a minimum 2.0 GPA, including (a) the major or area of emphasis described in the Required Program outlined below (earning a C or better in these courses) and (b) either the Intersegmental General Education Transfer Curriculum (IGETC) or the California State University General Education Breadth Requirements.

Students interested in transferring to a CSU campus to pursue a bachelor’s degree in geography should meet with a counselor to confirm the courses required for lower division preparation in the major. Although additional preparatory courses are not required for this degree, a careful review of the requirements at your chosen CSU will increase the likelihood that your transfer experience is smooth and successful.

Career Opportunities

The opportunities for geographers are as varied as the scope of geography itself. Geographers are found throughout the public and private sector, though rarely in positions with the title of Geographer. When combined with appropriate internships and/or other work experience, a baccalaureate degree in geography is excellent preparation for careers in natural resource management, environmental consulting, urban and regional planning, and elementary and secondary teaching. Geographic skills and knowledge are also quite valuable in diverse fields such as real estate, marketing, and demography.

(continued on next page)
GEOGRAPHY & GIS

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- describe the general content and scope of baccalaureate-level geography studies.
- compare and contrast the general biophysical and sociocultural differences and similarities among world regions.
- interpret maps and mapped data utilizing basic map elements, including scales, common coordinate systems, and map symbols.
- compare and contrast common geospatial technologies such as Geographic Information Systems (GIS), Global Positioning System (GPS), and remote sensing.
- evaluate and analyze common geographic problems and their solutions.
- list and describe at least three career options for geographers.

Requirements for Degree 19 Units

GEOG 300 Physical Geography: Exploring Earth’s Environmental Systems .. 3
GEOG 301 Physical Geography Laboratory ... 1
GEOG 310 Human Geography: Exploring Earth’s Cultural Landscapes .. 3

A minimum of 6 units from the following: .. 6¹

GEOG 306 Weather and Climate (3)
GEOG 320 World Regional Geography (3)
GEOG 322 Geography of California (3)
GEOG 390 Field Studies in Geography (1-4)

A minimum of 6 units from the following: .. 6²

ANTH 310 Cultural Anthropology (3)
GEOG 305 Global Climate Change (3)
GEOG 307 Environmental Hazards and Natural Disasters (3)
GEOG 330 Introduction to Geographic Information Systems (3)
GEOL 300 Physical Geology (3)

¹GEOG 390 must be taken for at least 1.0 units.
²Students may also substitute any course from the previous list not already taken to fulfill degree requirements.

Associate in Arts for Transfer Degree Requirements: The Geography Associate in Arts for Transfer (A.A.T) Degree may be obtained by completion of 60 transferable, semester units with a minimum 2.0 GPA, including (a) the major or area of emphasis described in the Required Program, and (b) either the Intersegmental General Education Transfer Curriculum (IGETC) or the California State University General Education-Breadth Requirements.

Geographic Information Systems (GIS) Degree

Geographic Information Systems (GIS) are collections of computers, software applications, and personnel used to capture, store, transform, manage, analyze, and display spatial information. This powerful technology has a wide range of applications in planning and management by government agencies, business, and industry. The A.S. Degree provides a solid technical background in GIS concepts and applications including database design, the Global Positioning System (GPS), cartography, GIS programming, spatial analysis, and interdisciplinary applications of the technology. The degree also includes ARC General Education and elective courses, which are required for graduation. Completion of the degree requires practical work experience in GIS.

(continued on next page)
(Geographic Information Systems (GIS) Degree continued)

particular field of interest, will at least be exposed to and probably use a GIS in some capacity in the years ahead. The purpose of American River College’s GIS program is to prepare students for careers in this expanding technological field.

Requirements for Degree 32.5-35.5 Units

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 330</td>
<td>Introduction to Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 334</td>
<td>Introduction to GIS Software Applications</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 340</td>
<td>Cartographic Design for GIS</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 342</td>
<td>Introduction to Remote Sensing and Digital Image Processing</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 344</td>
<td>Spatial Analysis and Modeling in GIS</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 350</td>
<td>Data Acquisition in GIS</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 354</td>
<td>Introduction to the Global Positioning System (GPS)</td>
<td>1.5</td>
</tr>
<tr>
<td>GEOG 360</td>
<td>Database Design and Management in GIS</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 362</td>
<td>Advanced Database Design and Management in GIS</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 375</td>
<td>Introduction to GIS Programming</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 385</td>
<td>Introduction to Web Based GIS</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 498</td>
<td>Work Experience in Geography</td>
<td>1 - 4</td>
</tr>
</tbody>
</table>

Associate Degree Requirements: The Geographic Information Systems (GIS) Associate in Science (A.S.) Degree may be obtained by completion of the required program, plus general education requirements, plus sufficient electives to meet a 60-unit total. See ARC graduation requirements.

General Science Degree

This program provides a broad study in the fields of biological and physical sciences in preparation for transfer to a four-year program and continuation of studies in upper division science courses.

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- evaluate new and accepted ideas about the natural universe using scientific methods.
- analyze a wide variety of natural phenomena using basic definitions and fundamental theories of biological or physical sciences.
- apply appropriate quantitative and qualitative methods to interpret and analyze pertinent data.
- describe the basic definitions and fundamental theories of an introductory natural science.
- articulate orally and/or in writing the importance of continuous examination and modification of accepted ideas as a fundamental element in the progress of science.
- recognize ethical components of scientific decision making and apply personal and social values within the process of decision making in scientific endeavors.

Requirements for Degree 18 Units

A minimum of 18 units from the following: 18

Physical Science Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td>18.5</td>
</tr>
</tbody>
</table>

Biological Science Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH</td>
<td></td>
<td>300, 301, 303, 370, 372, 480, 495, 499</td>
</tr>
<tr>
<td>BIOL</td>
<td></td>
<td>300, 301, 303, 305, 310, 322, 332, 342, 352, 370, 390, 400, 410, 415, 420, 430, 431, 440, 442, 482, 490, 491, 495, 499</td>
</tr>
<tr>
<td>BIOT</td>
<td></td>
<td>301, 305, 307, 308, 311, 312, 499</td>
</tr>
<tr>
<td>NATR</td>
<td></td>
<td>300, 302, 303, 304, 305, 306, 307, 310, 320, 322, 330, 332, 340, 346, 495, 499</td>
</tr>
<tr>
<td>PSYC</td>
<td></td>
<td>310, 311, 495, 499</td>
</tr>
</tbody>
</table>

A must be transfer-level and must include one laboratory course in a physical science and one laboratory course in a biological science.

Associate Degree Requirements: The General Science Associate in Science (A.S.) Degree may be obtained by completion of the required program, plus general education requirements, plus sufficient electives to meet a 60-unit total. See ARC graduation requirements.

Geographic Information Systems (GIS) - Certificate

Geographic Information Systems (GIS) are collections of computers, software applications, and personnel used to capture, store, transform, manage, analyze, and display spatial information. This powerful technology has a wide range of applications in planning and management by government agencies, business, and industry. The certificate provides a solid technical background in GIS concepts and applications including database design, the Global Positioning System (GPS), cartography, GIS programming, spatial analysis, and interdisciplinary applications of the technology. Completion of the certificate requires practical work experience in GIS.

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- assess and describe fundamental aspects of geographic information and scale, with specific reference to raster and vector digital spatial data models used to represent such information.
- evaluate and compile various types of spatial data, with specific attention to geospatial metadata, data quality, and identification of the most appropriate data type for use in a specific GIS application.
- compare and contrast the variety of available coordinate systems, map projections, and datums, and choose the appropriate variety for a specific GIS application.
- originate, classify, edit, and manage digital spatial data using various techniques (e.g., manual, scan, and on-screen digitizing, computer-assisted drafting, GPS, etc.).
- design, synthesize, validate, optimize, and manage spatial attribute tables and databases.
- apply appropriate data normalization and classification schemes to attribute data.
- formulate geoprocessing and analysis functions that are appropriate for specific applications, and be able to perform and evaluate the results of such processes (such as buffering, overlay, reclassification, address matching, and statistical analysis).
- compare and contrast the effectiveness of various GIS output products, including maps, tables, charts, and other digital output for specific applications.
- describe, assess, and compare common map elements and the cartographic design process.

(continued on next page)
• synthesize, design, apply, and manage a GIS project, including estimates of time and labor requirements.
• propose at least three examples of GIS applications that document spatial distributions or solve spatial problems.
• list and describe at least three career options for GIS professionals.
• design, create, and disseminate high-quality maps in both hard-copy (paper) and digital (on-screen) forms.
• compare and contrast the effectiveness of hard-copy and digital maps.
• analyze problems encountered in the study of other disciplines, and formulate appropriate GIS solutions.

Career Opportunities
According to an Environmental Systems Research Institute survey, over 80 percent of the data used for decision-making in government and industry has a spatial component. New areas of rapid growth are in criminal justice, homeland security, marketing, retail site location, resource allocation, banking, health-care planning, disease control, insurance, real estate, and disaster preparedness, management, and response. Most local, state, and federal government agencies use GIS and maintain a staff of GIS technicians, analysts, and professionals. GIS is also commonly used in the private sector by businesses, planners, architects, foresters, geologists, environmental scientists, archaeologists, real estate professionals, marketers, sociologists, and bankers. The growth in application areas of GIS and of GIS as a specialized discipline represents a new way for individuals, agencies, and businesses to view the world. The expansion of jobs in GIS is anticipated to continue for many years to come. It is likely that all students, regardless of their particular field of interest, will at least be exposed to and probably use a GIS in some capacity in the years ahead. The purpose of American River College’s GIS program is to prepare students for careers in this expanding technological field.

See losrios.edu/gainful-emp-info/gedt.php?major=011364C01 for Gainful Employment Disclosure.

Requirements for Certificate: 29.5-32.5 Units

GEOG 330 Introduction to Geographic Information Systems ... 3
GEOG 334 Introduction to GIS Software Applications ... 3
GEOG 340 Cartographic Design for GIS ... 3
GEOG 342 Introduction to Remote Sensing and Digital Image Processing ... 3
GEOG 344 Spatial Analysis and Modeling in GIS ... 3
GEOG 350 Data Acquisition in GIS ... 3
GEOG 354 Introduction to the Global Positioning System (GPS) ... 1.5
GEOG 360 Database Design and Management in GIS ... 3
GEOG 498 Work Experience in Geography ... 1-4

And a minimum of 6 units from the following: ... 6
GEOG 362 Advanced Database Design and Management in GIS (3)
GEOG 375 Introduction to GIS Programming (3)
GEOG 385 Introduction to Web Based GIS Application Development (3)

Geography

GEOG 300 Physical Geography: Exploring Earth’s Environmental Systems 3 Units
Advisory: MATH 32 or 42; and ENGWR 102 and ENGRD 116 with a grade of “C” or better; OR ESLR 320 and ESLW 320 with a grade of “C” or better.
General Education: AAAS Area IV; CSU Area B1; IGETC Area 5A
Course Transferable to UC/CSU

This course explores the processes and interrelationships which shape Earth’s natural landscapes. Key topics include solar energy balance, weather and climate, water resources, landforms, natural hazards, soil, and vegetation. Relevant application of these concepts is used to explain the evolving relationship between humans and Earth’s natural systems. Field trips may be required to relate course content to the real world. (C-ID GEOG 110)

GEOG 301 Physical Geography Laboratory 1 Unit
Corequisite: GEOG 300
Advisory: MATH 32 or 42 with a grade of “C” or better; and eligible for ENGRD 310 or ENGRD 312 AND ENGWR 300, OR ESLR 340 AND ESLW 340.
General Education: CSU Area B3; IGETC Area 5C
Course Transferable to UC/CSU
Hours: 54 hours LAB

This course is a laboratory study of basic principles and concepts involved in understanding Earth’s environmental systems. Labs feature observation, collection, analysis and display of data related to the study of energy, weather and climate, vegetation, soils, landforms, and environmental hazards. Additionally, units feature geographic methods and technology, including interpretation of maps and other geographic imagery, weather instrumentation, the global positioning system (GPS), and relevant computer and Internet applications. Field trips may be required. (C-ID GEOG 111)

GEOG 305 Global Climate Change 3 Units
Same As: GEOL 320
Advisory: ENGWR 102 or ESLW 310 AND ENGRD 116 or ESLR 310 AND and MATH 100, 104 or 132 with a grade of “C” or better.
General Education: AAAS Area IV; CSU Area B1; IGETC Area 5A
Course Transferable to UC/CSU
Hours: 54 hours LEC

This course explores the history and mechanisms of climate change in Earth’s past, as well as the methods that scientists use to investigate climate change. It also focuses on climate change in Earth’s recent history (the past few million years) and the role that humans have had in climate change, especially since the industrial revolution. Additionally, it investigates the effects of climate change in today’s world and discusses possible technological and political solutions to this vast and increasingly important problem. Field trips may be required. This course is not open to students who have completed GEOL 320.
GEOG 306 Weather and Climate 3 Units
Advisory: MATH 32 or 42; and ENGRD 116 with a grade of “C” or better; OR ESLR 320 and ESLW 320 with a grade of “C” or better.

General Education: AA/AS Area IV; CSU Area B1; IGETC Area 5A

Course Transferable to UC/CSU

Hours: 54 hours LEC

This course introduces atmospheric processes including energy and moisture exchanges; atmospheric pressure; global circulation; precipitation processes; weather systems; severe weather; and world, regional, and local climate systems. Course content also includes observation and analysis of atmospheric data using charts, weather maps, and radar and satellite imagery from the Internet and other sources. Field trips may be required to reinforce course content. (C-ID GEOG 130)

GEOG 307 Environmental Hazards and Natural Disasters 3 Units

Same As: GEOL 325

General Education: AA/AS Area IV; CSU Area B1; IGETC Area 5A

Course Transferable to UC/CSU

Hours: 54 hours LEC

This course covers the environmental effects and applications of Earth-related processes. It focuses on earthquakes, volcanic eruptions, landslides, and flooding. Topics also include the availability and exploitation of natural resources, waste disposal, and global climate change. Humans as a force in environmental change are emphasized. The course addresses geology, engineering, environmental studies, natural resources, geography, and science education. One field trip is required. Not open to students who have completed GEOL 325.

GEOG 308 Introduction to Oceanography 3 Units

Same As: GEOL 330

Advisory: GEOG 301 or GEOL 301

General Education: AA/AS Area IV; CSU Area B1; IGETC Area 5A

Course Transferable to UC/CSU

Hours: 54 hours LEC

This course is an integrated study of the world's oceans, including the physical, chemical, biological and human-made processes that affect the oceans. Topics include plate tectonics, ocean basins and sediments, water chemistry, waves, tides, shoreline processes, ocean currents and its biosystems. Humans have impacted nearly all aspects of the oceans, which are critical to our species. Regional oceanographic features are emphasized and a field trip to gain familiarity with regional physical shoreline features is required. This course is not open to students who have completed GEOL 330.

GEOG 309 Introduction to Oceanography Lab 1 Unit

Same As: GEOL 331

Corequisite: GEOG 308 or GEOL 330

Advisory: GEOG 301 and GEO 301

General Education: CSU Area B3; IGETC Area 5C

Course Transferable to UC/CSU

Hours: 54 hours LAB

This course is a laboratory investigation of Earth's oceans, emphasizing coastal processes of California. Most laboratory exercises are incorporated into field studies of California's coast, which involves visiting and comparing several distinct coastal environments. Camping is required, and a small fee is to be paid by the student. This course is not open to students who have completed GEOL 331.

GEOG 310 Human Geography: Exploring Earth's Cultural Landscapes 3 Units

Advisory: MATH 32 or 42 with a grade of “C” or better or placement through the assessment process; AND eligible for ENGRD 310 or ENGRD 312 AND ENGRW 300; OR ESLR 340 AND ESLW 340.

General Education: AA/AS Area V(b); AA/AS Area VI; CSU Area D5; IGETC Area 4E

Course Transferable to UC/CSU

Hours: 54 hours LEC

This course investigates the diverse patterns of human settlement, development, and movement on earth, which evolved as a result of cultural and environmental factors. Emphasis is placed on understanding global population and migration patterns, language, religion, ethnicity, political and economic systems, development issues, agriculture, and urbanization. (C-ID GEOG 120)

GEOG 320 World Regional Geography 3 Units

Advisory: MATH 32 or 42; and eligible for ENGRD 310 or ENGRD 312 AND ENGRW 300, OR ESLR 340 AND ESLW 340.

General Education: AA/AS Area V(b); AA/AS Area VI; CSU Area D5; IGETC Area 4E

Course Transferable to UC/CSU

Hours: 54 hours LEC

This course is a global survey of the world's cultural regions. Basic geographic concepts and ideas are used to study and compare people, resources, landscapes, livelihood, economics, and origins across Earth's major geographic regions. The interaction of countries and regions, their global roles, and the conflicting pressures of cultural diversity versus globalization are presented. The widening gap between more developed and less developed countries is integrated throughout the course. Cultural and ethnic diversity, as it pertains to the expanding population of the United States, is evaluated throughout the course. (C-ID GEOG 125)

GEOG 322 Geography of California 3 Units

Advisory: MATH 32 or 42 with a grade of “C” or better; and eligible for ENGRD 310 or ENGRD 312 AND ENGRW 300, OR ESLR 340 AND ESLW 340.

General Education: AA/AS Area V(b); AA/AS Area VI; CSU Area D5; IGETC Area 4E

Course Transferable to UC/CSU

Hours: 54 hours LEC

This course is a study of the various natural and cultural environments of California, with special emphasis on the interaction of people with landforms, climate, natural vegetation, soils and resources. Historical, political, and economic development within this diverse environment is presented. The diversity of cultures which make up the state's expanding population is studied and compared. Analysis of current relevant issues, including those based on ethnic and cultural differences, forms an integral part of this course. (C-ID GEOG 140)

GEOG 330 Introduction to Geographic Information Systems 3 Units

Advisory: CISC 300

General Education: AA/AS Area II(b)

Course Transferable to UC/CSU

Hours: 54 hours LEC

This course provides an introduction to the concepts, methods, and applications of Geographic Information Systems (GIS). Emphasis is on the techniques used to capture, store, query, analyze, and display spatial data. Specific topics include applications of GIS, geographic information and scale, coordinate systems, geospatial data models, data classification and symbolization, query and selection, cartographic design, data acquisition, data quality, geoprocessing, relational databases, metadata, spatial analysis, and GIS software.
GEOG 331 Exploring Maps and Geographic Technologies 3 Units
Advisory: GEOG 300, CISC 300 or equivalent with a grade of "C" or better
Course Transferable to CSU
Hours: 50 hours LEC; 12 hours LAB
This course introduces students to the world of maps (both hard-copy and digital) and the geographic techniques and technologies that are utilized in the creation of modern cartographic documents. Examination of cartographic design, basic statistics, the Global Positioning System (GPS), Internet mapping, remote sensing, and Geographic Information Systems (GIS) are covered. (C-ID GEOG 150)

GEOG 334 Introduction to GIS Software Applications 3 Units
Advisory: CISC 300 and GEOG 330
Course Transferable to CSU
Hours: 50 hours LEC; 12 hours LAB
This course provides the conceptual and practical foundations for using Geographic Information Systems (GIS) software. It emphasizes basic GIS software functionality including map display, attribute and spatial query, address geocoding, spatial database management, spatial analysis, cartographic presentation, and spatial data management. (C-ID GEOG 155)

GEOG 340 Cartographic Design for GIS 3 Units
Prerequisite: GEOG 330 with a grade of "C" or better
Course Transferable to CSU
Hours: 54 hours LEC
This course provides an introduction to map design and production in the context of Geographic Information Systems (GIS). Emphasis is on the concepts and methods associated with designing and producing thematic maps. Specific topics include data standardization and classification, symbolization, map projections, map elements, typography, cartographic design, thematic mapping techniques (choropleth, proportional symbol, dot, isarithmic, and multivariate), color in cartography, history of cartography, and map reproduction. Map critique sessions are also held.

GEOG 342 Introduction to Remote Sensing and Digital Image Processing 3 Units
Prerequisite: GEOG 330 with a grade of "C" or better
Course Transferable to CSU
Hours: 50 hours LEC; 12 hours LAB
This course introduces the principles and concepts of remote sensing and digital image processing as it relates to Geographic Information Systems (GIS). Fundamentals of remote sensing, aerial photography, satellite imagery, Radio Detection and Ranging (RADAR) and Light Detection and Ranging (LIDAR), and hyperspectral imaging systems are taught. A variety of digital image processing techniques are presented to analyze various remote sensing platforms.

GEOG 344 Spatial Analysis and Modeling in GIS 3 Units
Prerequisite: GEOG 330 with a grade of "C" or better
Course Transferable to CSU
Hours: 54 hours LEC
This course provides a survey of the various concepts, approaches, and tools involved in the analysis and modeling of spatial data using Geographic Information Systems (GIS). Emphasis is on the investigation of spatial distributions and relationships, and the methods used to answer spatial questions and solve spatial problems. Specific topics include statistical and spatial analysis, geoprocessing, spatial modeling, and map algebra. Additional topics include distance and density surfaces, cluster analysis, surface interpolation and resampling, hydrologic analysis, 3D display/animation, and regression analysis.

GEOG 350 Data Acquisition in GIS 3 Units
Prerequisite: GEOG 330 with a grade of "C" or better
Course Transferable to CSU
Hours: 54 hours LEC
This course introduces the techniques, theory, and practical experience necessary to acquire, convert, and create digital spatial data. Topics include acquisition of existing Geographic Information Systems (GIS) data, metadata, formatting and conversion of GIS data, creating data utilizing digital cameras and scanners, the utilization of remotely sensed data, and use of the Global Positioning System (GPS).

GEOG 354 Introduction to the Global Positioning System (GPS) 1.5 Units
Advisory: GEOG 300 and 301
Course Transferable to CSU
Hours: 27 hours LEC
This course introduces the Global Positioning System (GPS). Topics include the basic concepts of GPS and hands-on operation of the technology, computer interfaces, Geographic Information Systems (GIS) software, and its use in real-world applications.

GEOG 360 Database Design and Management in GIS 3 Units
Prerequisite: GEOG 330 with a grade of "C" or better
Course Transferable to CSU
Hours: 54 hours LEC
This course examines principles of Geographic Information Systems (GIS) database management and design including conversion fundamentals, modeling techniques, and strategic planning. The needs, alternatives, and pitfalls of spatial database development and conversion are discussed. In addition, this course examines various types of spatial and tabular data applicable to GIS, as well as relevant issues such as hardware and software requirements. Particular attention is paid to determining an appropriate methodology, conversion plan, and data quality assurance procedure. This course includes hands-on practical exercises in spatial database management skills.

GEOG 362 Advanced Database Design and Management in GIS 3 Units
Prerequisite: GEOG 360 with a grade of "C" or better
Advisory: CISA 320 and CISC 300
Course Transferable to CSU
Hours: 54 hours LEC
This course extends the concepts presented in GEOG 360. The advanced applications of organizing, inputting, and editing spatial data are examined and implemented, including spatial data engine service management, spatial functions, multi-user editing, replication, and data organization. Traditional spatial database topics are rigorously examined in a GIS context, including data integration, warehousing, complex SQL spatial coding, and system integration.
GEOG 375 Introduction to GIS Programming 3 Units
Prerequisite: GEOG 330 with a grade of “C” or better
Advisory: GEOG 334
General Education: AA/AS Area II(b)
Course Transferable to CSU
Hours: 45 hours LEC, 27 hours LAB
This course provides the concepts and skills necessary to become a proficient GIS applications developer using the Python scripting language, in conjunction with ArcObjects, to develop commonly used GIS procedures and functions. It focuses on common GIS methods for querying, selecting geographic features, working with selection sets, editing tables, and performing geoprocessing operations.

GEOG 380 Advanced GIS Software Applications 3 Units
Prerequisite: GEOG 334 with a grade of “C” or better
Course Transferable to CSU
Hours: 50 hours LEC, 12 hours LAB
This course involves the in-depth study of industry standard Geographic Information Systems (GIS) software applications (such as ArcMap and ArcCatalog). GIS software is used to perform advanced geoprocessing in order to solve spatial problems. Emphasis is placed on the creation, modification, analysis, and presentation of spatial data. Specific topics include a review of basic GIS functionality, the use of tools and models to geoprocess data, vector editing and topology, georeferencing and data conversion, network analysis, and data aggregation.

GEOG 385 Introduction to Web Based GIS Application Development 3 Units
Prerequisite: GEOG 330 with a grade of “C” or better
Advisory: CISW 300
Course Transferable to CSU
Hours: 50 hours LEC, 12 hours LAB
This course introduces the development of Web-based Geographic Information Systems (GIS) solutions. Map authoring and Web service management tools (such as ArcGIS and ArcGIS Server) are used to teach the techniques of creating, managing, maintaining, and deploying Web map services. In addition this course introduces several options for using published Web map services (such as Web-based and mobile) mapping applications.

GEOG 390 Field Studies in Geography 1-4 Units
Course Transferable to CSU
Hours: 6-24 hours LEC, 36-144 hours LAB
This course involves field study of selected locations of geographic interest. Course content varies according to field trip destination but may include topics in physical geography (e.g., plant and animal communities, climate and weather, geology and geomorphology, natural hazards, environmental impacts, etc.), human geography (e.g., cultural landscapes, economic activities, transportation issues, land use patterns, etc.), and/or introduction to tools and techniques used for geographic field research (e.g., map and compass, the Global Positioning System (GPS), Geographic Information Systems (GIS), etc.). Field excursions are required and field trip expense fees may be required. A portion of this course may be offered in a TBA component of 18-144 hours which may include composing field notes, making field sketches, collecting various forms of field data, analysis of field data, and use of maps, compass, and/or the Global Positioning System. (C-ID GEOG 160)

GEOG 391 Field Studies in Geography: Mountain Landscapes 1-4 Units
Course Transferable to CSU
Hours: 6-24 hours LEC, 36-144 hours LAB
This course covers geographic principles and processes in mountain environments. Course content varies by destination and may include topics in physical geography (e.g., plant and animal communities, climate and weather, geology and geomorphology, natural hazards, environmental impacts) and human geography (e.g., cultural landscapes, economic activities, transportation issues, land use patterns). It also introduces tools and techniques used for geographic field research (e.g., map and compass use, the Global Positioning System (GPS), Geographic Information Systems (GIS)). Field trips are required.

GEOG 395 Independent Studies in Geography 1-3 Units
Course Transferable to CSU
Hours: 54-162 hours LAB
Independent Study is an opportunity for the student to extend classroom experience in this subject, while working independently of a formal classroom situation. Independent study is an extension of work offered in a specific class in the college catalog. To be eligible for independent study, students must have completed the basic regular catalog course course at American River College. They must also discuss the study with a professor in this subject and secure approval. Only one independent study for each catalog course will be allowed.

GEOG 398 Work Experience in Geography 1-4 Units
Advisory: Eligible for ENGRD 310 or ENGRD 312 AND ENGW 300; OR ESLR 340 AND ESLW 340.
Enrollment Limitation: Students must be in a paid or unpaid internship, volunteer position, or job related to geography or geographic information systems (GIS) with a cooperating site supervisor. Students are advised to consult with the Geography Department faculty to review specific certificate and degree work experience requirements.
General Education: AA/AS Area III(b)
Course Transferable to CSU
Hours: 60-300 hours LAB
This course provides students with opportunities to develop marketable skills in preparation for employment or advancement within the field of geography or geographic information systems (GIS). It is designed for students interested in work experience and/or internships in transfer-level degree occupational programs. Course content includes understanding the application of education to the workforce, completion of Title 5 required forms which document the student’s progress and hours spent at the work site, and developing workplace skills and competencies. During the semester, the student is required to attend a weekly orientation and 75 hours of related paid work experience, or 60 hours of unpaid work experience for one unit. An additional 75 or 60 hours of related work experience is required for each additional unit. First-time participants are required to attend a weekly orientation and a final meeting. Returning participants are required to attend the first class meeting, a mid-semester meeting, and a final meeting and may meet individually with the instructor as needed to complete a work site observation and all program forms, receive updates, and assignments. Students may take up to 16 units total across all Work Experience course offerings. This course may be taken up to four times when there are new or expanded learning objectives. Only one Work Experience course may be taken per semester.